Ir al contenido principal

PRACTICA 2

Introducción:
Un auto-transformador es una máquina eléctrica de construcción y características similares a las de un transformador, pero que, a diferencia de este, solo posee un devanado único alrededor de un núcleo ferromagnético.

En un auto-transformador, la porción común (llamada por ello "devanado común") del devanado único forma parte tanto del devanado "primario" como del "secundario". La porción restante del devanado recibe el nombre de "devanado serie" y es la que proporciona la diferencia de tensión entre ambos circuitos, mediante la adición en serie (de allí su nombre) con la tensión del devanado común.

Operación
Tiene un solo bobinado arrollado sobre el núcleo, pero dispone de cuatro bornes, dos para cada circuito, y por ello presenta puntos en común con el transformador

Consta de un bobinado de extremos A y D, al cual se le ha hecho una derivación en el punto intermedio B. Por ahora llamaremos primario a la sección completa A D y secundario a la porción B D, pero en la práctica puede ser a la inversa, cuando se desea elevar la tensión primaria.
Resultado de imagen para autotransformador
La tensión de la red primaria, a la cual se conectará el auto-transformador, es V1, aplicada a los puntos A y D. mostrados en la fig. 3 Como toda bobina con núcleo de hierro, en cuanto se aplica esa tensión circula una corriente que hemos llamado de vacío.

Sabemos también, que esa corriente de vacío está formada por dos componentes; una parte es la corriente magnetízate, que está atrasada 90° respecto de la tensión, y otra parte que está en fase, y es la que cubre las pérdidas en el hierro, cuyo monto se encuentra multiplicando esa parte de la corriente de vacío, por la tensión aplicada. Llamamos a la corriente total de vacío I0, como lo hemos hecho en otras oportunidades.


Ahora bien, centrándonos en la manipulación del auto-transformador...
1.- Material:
A) Auto-transformador
B) Multímetro
C) Fuente reguladoras de voltaje
D) Puntas de conexión 
E) Termostato o probador de temperatura                 



                                                                                       


 2.- Probar si había o no conductividad en el auto-transformador

 3.- En seguida conectamos la fuente de voltaje al auto-transformador, para suministrarle voltaje y ver de esta manera como se comportaba el dispositivo.

Realizamos mediciones en los taps o derivaciones del auto-transformador, para verificar como el voltaje variaba de acuerdo al posicionamiento de los mismos, comprobamos que cuanta más superficie del auto-transformador requeríamos, el voltaje era mayor y cuanto menos, el voltaje era menor.
4.- El siguiente paso consistió en conectar un foco incandescente a la salida del transformador, para poder apreciar de manera visual como varea el voltaje de acuerdo a las derivaciones que hay en el auto-transformador.

En la siguiente imagen se muestra el foco conectado a la salida del auto-transformador, sin embargo visualizamos que la intensidad luminosa que emite el foco es meramente débil, esto es debido a que solo consideramos una derivación o tap.



5.- En esta última imagen observamos que la intensidad luminosa del foco es mucho mayor que la primera, debido a que hasta este punto ocupamos un número mayor de derivaciones, para suministrar al foco de energía.

Comentarios

Entradas populares de este blog

SISTEMA DE CONTROL DE VELOCIDAD WARD LEONARD

SISTEMA DE CONTROL DE WARD LEONARD Es introducido por Henry Ward Leonard en 1891. El método de control de velocidad Ward Leonard se utiliza para controlar la velocidad de un motor de CC. Es un método básico de control de la armadura. Este sistema de control consiste en un motor de corriente continua M 1  y alimentado por un generador de CC G. En este método, la velocidad del motor de CC (M 1 ) se controla mediante la aplicación de voltaje variable a través de su armadura. Esta tensión variable se obtiene utilizando un conjunto motor-generador que consiste en un motor M 2  (motor de CA o CC) acoplado directamente al generador G. Es un método muy utilizado para controlar la velocidad del motor de CC. Principio del método de Ward Leonard Diagrama de conexión básico de la  Sistema de control de velocidad Ward Leonard  Se muestra en las siguientes figuras. Sistema Ward Leonard con un motor de inducción La velocidad del motor m 1  debe controlarse, que es alimentado por

EJERCICIO 1 EN MATLAB

EJERCICIOS DE MATLAB PARTE 1 EJEMPLO 1-1 En la fi gura 1-7a) se observa un núcleo ferromagnético. Tres lados de este núcleo tienen una anchura uniforme, mientras que el cuarto es un poco más delgado. La profundidad del núcleo visto es de 10 cm (hacia dentro de la página), mientras que las demás dimensiones se muestran en la fi gura. Hay una bobina de 200 vueltas enrollada sobre el lado izquierdo del núcleo. Si la permeabilidad relativa mr es de 2 500, ¿qué cantidad de flujo producirá una corriente de 1 A en la bobina? Simulación en MATLAB:

EL CONMUTADOR

¿Qué es un conmutador? Conmutador Eléctrico. Un conmutador es un interruptor eléctrico rotativo en ciertos tipos de motores eléctricos y generadores eléctricos que periódicamente cambia la dirección de la corriente entre la armadura y el circuito externo. Un conmutador, es una característica común en máquinas rotativas de corriente continua. Al revertir el sentido de la corriente en la bobina en movimiento de la armadura de un motor, una fuerza constante rotativa (torque) es producido. De manera similar, en un generador, revirtiendo la conexión de la bobina al circuito externo provee de corriente directa unidireccional al circuito externo. La primera máquina de corriente directa con conmutador fue creada por Hippolyte Pixii en 1832, basado en una sugerencia de André-Marie Ampère. MOTOR DE CC La máquina de corriente continua se inicia describiendo a partir de sus componentes más significativos. Los elementos básicos son: ·          Inductor ·          Inducido ·